California Water 2030: An Efficient Future

Research for People and the Planet

Peter H. Gleick, Heather Cooley, David Groves

To be released
September 2005
www.pacinst.org

- What could California's water situation look like in the year 2030 – twenty-five years from now?
- Almost anything: from shortage and political conflict to sufficiency and cooperation.
- Scenario analysis can help with planning.

- We present a "High Efficiency" scenario in which Californians maximize our ability to do the things we want, while minimizing the amount of water required to satisfy those desires.
- Under the Pacific Institute scenario, total human use of water could decline by as much as 20 percent.

- ◆ Under the High Efficiency scenario, we assume no new technologies, the same demographic trends as DWR, and continued strong agricultural production of food and fiber.
- We assume more effective price- and nonprice-driven conservation and efficiency programs, implemented statewide.

- The PI High Efficiency scenario is not a prediction for the future, but an achievable possibility.
- ◆ *Can* such an efficient water future be achieved? Yes.
- ♦ Will such a future be achieved? That depends on what water policies we implement.

California Water Scenarios

- ◆ The State of California has prepared water scenarios and projections as part of longterm water planning.
- ◆ Official scenarios routinely project substantial increases in water use over time, often far in excess of the use that actually materializes.

DWR Bulletin 160-2005 Scenarios

- ◆ Current Trends. Water demand based on "current trends with no big surprises."
- ◆ Less Resource Intensive. "California is more efficient in 2030 water use than today while growing its economy within much more environmentally protective policies."
- ◆ More Resource Intensive. "California is highly productive in its economic sector. Environment...is not the state's first priority. Water use in this scenario is less efficient in 2030..."

DWR Bulletin 160-2005 Scenarios

- ◆ All three DWR scenarios include modest efficiency improvements achievable with current policies and programs.
- ◆ DWR intends to evaluate various "response packages," including greater water-use efficiency efforts, for the 2010 California Water Plan.
- ♦ We believe it is critical to begin evaluating, and implementing, stronger water-conservation and efficiency programs now.

Urban Water Demand: 2000 and DWR Scenarios

Agricultural Water Demand: 2000 and DWR Scenarios

The Pacific Institute High Efficiency Scenario

- ◆ Produced with the same model developed by Groves et al., and used by DWR.
- ◆ Adopted the same demographic projections (population, housing distribution, agricultural land area, crop type and distribution, income projections) used by DWR.
- ◆ Changed the assumptions about the potential for price- and non-price-driven water-use efficiency improvements.

Pacific Institute Urban Water Scenario Assumptions

- ◆ Same demographic assumptions as DWR "Current Trends"
 - Population, households, size, income, employment.
- Higher prices
 - Current Trends: 2000 +20%
 - PI High Efficiency: 2000 +41% (historical trend)
- Slightly higher price elasticities
- ◆ Pacific Institute urban efficiency potential.

Actual and Projected California Urban Water Use

Drivers of Urban Water Demand Change (2000 - 2030)

Per-Capita Urban Use: 2000 and 2030 Scenarios

Pacific Institute Agricultural Water Scenario Assumptions

- ◆ Same land use assumptions as DWR "Current Trends"
 - Irrigated crop area, irrigated land area, multicropped area.
- ◆ Same crop types; same crop yields; same elasticities.
- Higher prices
 - Current Trends: 2000 plus 10%
 - PI High Efficiency: 2000 plus 68% (Historical trend plus full CVP repayment)
- Historical trend in irrigation method.

Percent of Irrigated Land by Irrigation Method and Crop Type

Actual and Projected California Agricultural Water Use

Total California Water Use: Current Trends and High Efficiency Scenarios

Some additional thoughts; next steps; questions:

- ◆ Yields, agricultural productivity, water use
- New technology
- Regional differences
- Groundwater overdraft; conjunctive use
- Reclaimed/recycled water
- ◆ Consumptive vs. non-consumptive uses
- Climate change

Conclusions

- Growth in water demand is **not** inevitable.
- ◆ A High Efficiency future can be projected, with no new technologies.
- ◆ The Pacific Institute High Efficiency scenario reduces total 2030 California water use by 20%:
 - With a healthy urban economy,
 - With a healthy agricultural sector.

Conclusions

- ◆ Reaching the Pacific Institute High Efficiency future is possible, but will require serious effort on the part of California policy makers, farmers, water managers, corporations, and the public.
- ♦ [We believe] such a future is preferable to a Current Trends scenario.
- ◆ The sooner steps toward implementing efficiency improvements are taken, the easier the transition to an efficient future will be.

Research for People and the Planet

Pacific Institute
654 13th Street
Oakland, California 94612
www.pacinst.org